\runParam{I_D = [30, 20, 10, 40] #\paramUnits{\mu A} } \runParam{V_omin = [0.5, 0.4, 0.3, 0.6] #\paramLatex{V_{o,min}}} \runParam{R_out = [60, 72, 80, 50]#\paramUnits{M \Omega}} \runParam{V_tn = [0.3, 0.25, 0.35, 0.4] } \runParam{unCox = [160, 250, 300, 200]# \paramUnits{\mu A/V^2} \paramLatex{\mu_n C_{ox}}} \runParam{lambn = [0.04, 0.025, 0.05, 0.03]#\paramUnits{\mu m/V} \paramLatex{\lambda_n'}} \question[6] Consider the wide-swing current mirror shown below where the desired output current is \valU{I_D}. Given that $M_1$ and $M_2$ are identical in size and the minimum output voltage is \valU{V_omin}, find the length of the transistors such that the current mirror output resistance is \valU{R_out}. NMOS: $\val={V_tn}; \val={unCox}; \val={lambn}$ \begin{flushleft} \fontsize{12}{10}\selectfont \vspace{-20pt} \hbox{ \hspace{-100pt} \incProbLTspice[1.0\textwidth]{currMirror01a}} \vspace{-40pt} \end{flushleft} \begin{blankSpace} \vspace{100pt} \end{blankSpace} \begin{solutions} \textbf{Solution} \val={V_omin} $= 2V_{ov}$; \run={V_ov = V_omin/2} for both transistors\\ \run()={g_m = 2*I_D/V_ov} for each transistor\\ $R_{out}\approx g_mr_o^2$; \run()={r_o = sqrt(R_out/g_m)}\\ $r_o = L/(|\lambda_n'|I_D)$\\ \run()={L = r_o*abs(lambn)*I_D#\paramUnits{m}}\\ \hlite{\val={L}} \end{solutions} \begin{answers} \textbf{Answer} L = \valU{L} \end{answers}